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Abstract. We suggest a constrained instanton (CI) solution in the physical QCD vacuum which is described
by large-scale vacuum field fluctuations. This solution decays exponentially at large distances. It is stable
only if the interaction of the instanton with the background vacuum field is small and additional constraints
are introduced. The CI solution is explicitly constructed in the ansatz form, and the two-point vacuum
correlator of the gluon field strengths is calculated in the framework of the effective instanton vacuum
model. At small distances the results are qualitatively similar to the single instanton case; in particular,
the D1 invariant structure is small, which is in agreement with the lattice calculations.

1 Introduction

The non-perturbative vacuum of QCD is densely popu-
lated by long-wave fluctuations of gluon and quark fields.
The order parameters of this complicated state are charac-
terized by the vacuum matrix elements of various singlet
combinations of quark and gluon fields and condensates:
〈: q̄q :〉, 〈: F a

µνF a
µν :
〉
,
〈
: q̄(σµνF a

µν(λa/2))q :
〉
, etc. The non-

zero quark condensate 〈: q̄q :〉 is responsible for the spon-
taneous breakdown of chiral symmetry, and its value was
estimated a long time ago within the current algebra ap-
proach. The non-zero gluon condensate

〈
: F a

µνF a
µν :
〉

through the trace anomaly provides the mass scale for the
hadrons, and its value was estimated within the QCD sum
rule (SR) approach. The importance of the QCD vacuum
properties for hadron phenomenology has been established
by Shifman, Vainshtein and Zakharov [1]. They used the
operator product expansion to relate the behavior of the
hadron current correlation functions at short distances to
a small set of condensates. The values of low-dimensional
condensates were obtained phenomenologically from the
QCD SR analysis of various hadron channels.

Later the non-local vacuum condensates or vacuum
correlators have been introduced [2,3]. They describe the
distribution of quarks and gluons in the non-perturbative
vacuum. Physically, this means that vacuum quarks and
gluons can flow through the vacuum with non-zero mo-
mentum. From this point of view the standard vacuum ex-
pectation values (VEVs) like 〈: q̄q :〉, 〈: q̄D2q :

〉
,
〈
: g2F 2 :

〉
,

. . . appear as expansion coefficients of the quark M(x) =〈
: q̄(0)Ê(0, x)q(x) :

〉
and the gluon Dµν,ρσ(x) correlators

in a Taylor series in the variable x2/4.

The correlator Dµν,ρσ(x) of the gluonic strengths1,

Dµν,ρσ(x − y) ≡
〈
: TrFµν(x)Ê(x, y)F ρσ(y)Ê(y, x) :

〉
,

(1)
may be parameterized in the form that is consistent with
the general requirements of the gauge and Lorentz sym-
metries as [5]:

Dµν,ρσ(x)

≡ 1
24
〈
: F 2 :

〉{
(δµρδνσ − δµσδνρ)[D(x2) + D1(x2)]

+(xµxρδνσ − xµxσδνρ + xνxσδµρ − xνxρδµσ)

×∂D1(x2)
∂x2

}
, (2)

where Ê(x, y) = P exp
(
i
∫ y

x
Aµ(z)dzµ

)
is the path-ordered

Schwinger phase factor (the integration is performed along
the straight line) required for gauge invariance and Aµ(z)
= Aa

µ(z)λa/2, Fµν(x) = F a
µν(x)λa/2, F a

µν(x) = ∂µAa
ν(x)−

∂νAa
µ(x)+fabcAb

µ(x)Ac
ν(x). The P exponential ensures the

parallel transport of color from one point to other. In (2),〈
: F 2 :

〉
=
〈
: F a

µν(0)F a
µν(0) :

〉
is a gluon condensate, and

D(x2) and D1(x2) are invariant functions which charac-
terize non-local properties of the condensate in different
directions. The form factors are normalized at zero by the
conditions D(0) = κ, D1(0) = 1 − κ, that depend on the
dynamics considered. For example, for the self-dual fields
κ = 1, while in the Abelian theory without monopoles the
Bianchi identity yields κ = 0.

1 We follow the convention that the coupling constant is ab-
sorbed in the gauge field Aν(x).
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The gluon correlators Dµνρσ(x) are involved in an anal-
ysis [4] of the spectrum of the bound states of the heavy
QQ systems. The level shift depends on the parameter
λτ , where τ = 4/mQα2

s is the typical time of the low ly-
ing levels of the system, and λ is the correlation length of
the gluon correlator λ defined as D(x → ∞) ∼ 〈

: F 2 :
〉

×exp(−|x|/λ). Thus, at large distances the physically mo-
tivated asymptotics of the correlator is exponentially de-
creasing. The gluon correlators are the base elements of
the stochastic model of vacuum [5] and in the description
of high-energy hadron scattering [6].

Measuring the correlation length and vacuum field cor-
relators was the motivation to investigate these quantities
on the lattice. New high-statistical LQCD measurements
of the gauge-invariant bilocal correlator of the gluon field
strengths have become available down to a distance of 0.1
fm [7]. Recently, the field strength correlators have also
been studied in the effective dual Abelian Higgs model in
[8] and QCD sum rule approach [9]. In all these approaches
(see also [10]), the exponential decay of the correlators at
large distances has been observed. However, these investi-
gations still omit a small distance behavior of the non-local
condensates.

On the other hand, in QCD there is an instanton [11],
a well-known non-trivial non-local vacuum solution of the
classical Euclidean Yang–Mills equations with finite action
and size ρ. The importance of instantons for QCD is that it
is believed that an interacting instanton ensemble provides
a realistic microscopic picture of the QCD vacuum in the
form of an instanton liquid [12,13] (see, e.g., the recent
review in [14]). It has been argued on phenomenological
grounds that the distribution of instantons over their sizes
is peaked at a typical value ρc ≈ 1.7 GeV−1 and the liquid
is dilute in the sense that the mean separation between
the instantons is much larger than the average instanton
size.

In our previous work [15], we have shown that the in-
stanton model of the QCD vacuum provides a way to con-
struct non-local vacuum condensates. Within the effective
single instanton (SI) approximation we have obtained the
expressions for the non-local gluon Dµν,ρσ

I (x) and quark
MI(x) condensates and we derived the average virtuali-
ties of the quarks λ2

q and gluons λ2
g in the QCD vacuum.

It has been found that due to the specific properties of the
SI approximation (self-duality of the field) the D1 gluon
form factor is exactly zero. The behavior of the correla-
tion functions demonstrates that in the SI approximation
the model of non-local condensates can well reproduce the
behavior of the quark and gluon correlators at short dis-
tances. Actually, the quark and gluon average virtualities,
defined via the first derivatives of the non-local conden-
sates MI(x2), DI(x) at the origin,

λ2
q ≡ − 8

MI(0)
dMI(x2)

dx2

∣∣∣∣x=0 = 2
1
ρ2

c

,

λ2
g ≡ −8

dDI(x2)
dx2

∣∣∣∣x=0 =
24
5

1
ρ2

c

, (3)

are connected with the VEVs that parameterize the QCD
SR,

λ2
q ≡

〈
: q̄D2q :

〉
〈: q̄q :〉 ,

λ2
g ≡

〈
: F a

µνD̃2F a
µν :
〉

〈: F 2 :〉 = 2

〈
: fF 3 :

〉
〈: F 2 :〉 − 2

〈
: g4J2 :

〉
〈: F 2 :〉 , (4)

where
〈
: fF 3 :

〉
=
〈
: fabcF a

µνF b
νρF

c
ρµ :
〉
, J2 = Ja

µJa
µ and

Ja
µ = q̄(x)(λa/2)γµq(x). The value of λ2

q ≈ 0.5 GeV2 es-
timated in the QCD SR analysis [16,17] is reproduced at
ρc ≈ 2 GeV−1. This number is close to the estimate from
the phenomenology of the QCD vacuum in the instanton
liquid model. The model provides parameterless predic-
tions for the ratio λ2

g/λ2
q = 12/5. In [15] the effect of the

inclusion of the Schwinger exponent into the semi-classical
calculations has been analyzed. For some quantities this
effect is very strong, being of an order of 100% for the
gluon and quark average virtualities.

Nevertheless, the SI approximation used evidently fails
in the description of physically motivated distributions at
large distances. Asymptotically, we have found MI(x →
∞) ∼ ρ2

c/x2 and DI(x → ∞) ∼ ρ4
c/x4 for the quark and

gluon correlators, respectively. Thus, the SI solution over
the mathematical vacuum yields too slow asymptotics at
large distances. We should conclude that in order to have
a realistic model of vacuum correlators, the important ef-
fects of the instanton interaction with the long-wave vac-
uum configurations have to be included.

The key point in the picture of a realistic instanton
vacuum is the interaction of pseudoparticles in the vac-
uum. In [19], the interaction of a SI with an arbitrary
weak external field has been examined and dipole–dipole
forces in a far separated instanton–anti-instanton system
have been derived. Later, in [20], this background field has
been interpreted as a field of large-scale QCD vacuum fluc-
tuations, and the influence of the quark and gluon conden-
sates on the instanton density has been considered. The
main assumption of the instanton liquid models [12] is the
dominance of the instanton component in the vacuum and
in particular, that the gluon condensate is saturated by a
weakly interacting instanton liquid. In deriving instanton
ensemble properties the instanton–anti-instanton interac-
tion at intermediate separation starts to play a crucial role
in the stabilization of the liquid [13]. However, it turns out
that the final result strongly depends on the field ansatz
for an instanton–anti-instanton configuration [21,14]. Fur-
ther, in all instanton–anti-instanton ansätze suggested the
influence of the physical vacuum on an instanton profile
function has not been taken into account and the profile
has only power decreasing asymptotics, which contradicts
the expectations concerning the vacuum field correlators.
Moreover, it is known that the instanton liquid is not re-
sponsible for large-scale effects like confinement [14]. An-
other point is that the instanton density nc in the instan-
ton liquid models is normalized by the value of the gluon
condensate

〈
: (αs/π)F a

µνF a
µν :
〉

= 0.012 GeV4 obtained in
[1] from an analysis of the charmonium spectrum. More re-
cently, in [22], a detailed analysis based on charmonium,
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bottonium and heavy-light mesons have lead to a twice
larger value of the gluon condensate

〈
: (αs/π)F a

µνF a
µν :
〉

=
0.023 GeV4. Indefiniteness in the normalization provides a
window for the existence of a large-scale field component
in the QCD vacuum along with short-scale instantons.

In the present work, assuming dominance of the weak
interacting instanton liquid in the QCD vacuum, we sug-
gest that there is also a weak residual component of the
vacuum field with a large correlation length R of the or-
der of the confinement size. We are going to show, as-
suming only very general properties of a weak large-scale
vacuum field, that it deforms an instanton at large dis-
tances, leading to exponentially decreasing asymptotics
of the instanton profile and the instanton-induced vac-
uum field correlators. The vacuum model considered is a
two-phase one. The large-scale phase is described by the
background field and dominates at distances compared
with the confinement size. The short-scale phase is domi-
nated by instantons and is responsible for the spontaneous
breaking of chiral symmetry and the solution of the UA (1)
problem. The vacuum model suggested reveals a definite
non-locality mechanism within the QCD framework. We
shall illustrate this by analyzing the vacuum gluon corre-
lation functions D(x) and D1(x). Unfortunately, the nor-
malization of contributions from different phases to the
gluon condensate is not fixed by the instanton model and
remains as a free parameter, but the form of the correla-
tion functions can be described in detail. The latter is the
main motivation of the present work. The determination
of the vacuum field correlators is one of the main tasks of
the theory in describing the non-perturbative dynamics at
large distances compatible with the typical hadron size.

The paper is organized as follows: in Sect. 2 the in-
stanton field in the background of weak large-scale vac-
uum fluctuations is considered; solutions of the vacuum
field equations for small and large distances are analyzed
separately, and the constrained instanton solution inter-
polating two asymptotics is suggested in an ansatz form.
In Sect. 3, the space coordinate behavior of the non-local
correlator of the gluon field strengths is found and the
main asymptotics of the correlators D(x), D1(x) at large
distances are derived. These asymptotics are driven by
the parameters of the large-scale vacuum fluctuations: by
their strength and correlation length R.

2 Constrained instantons in QCD vacuum

The classical Yang–Mills equations in the Euclidean space

DµFµν(x) = 0, (5)

where the covariant derivative is Dµ = ∂µ − iAa
µτa/2,

have an instanton (+) ((−) is for an anti-instanton) as
an (anti-) self-dual finite-action solution with topological
charge Q = ±1,

Aa,±
sing,µ(x;x0) = 2Oab

I ηb,±
µν (x − x0)ν ϕI

g(x − x0)

with ϕI
g(x) =

ρ2

x2(x2 + ρ2)
(in singular gauge), (6)

localized in a size ρ. In (6), x0 is the position of the in-
stanton center, Oab

I is the orthogonal matrix of the in-
stanton’s global orientation in the color space and ηa,±

µν =
ε4aµν ∓ (1/2)εabcεbcµν are ’t Hooft symbols. The solution
(6) is written in the singular gauge within the SU(2) sub-
group (with generators τa/2) of the SUc(3) theory. This
classical field configuration reflects the symmetries of the
initial theory in terms of collective variables correspond-
ing to translational transformations, rotational symmetry
in color space and conform transformations.

The solution (6) is given in the mathematical vacuum
and has the unpleasant property of a very slow decay at
large distances as noted in the Introduction. This situation
is inadequate since the physical vacuum is not empty but
looks like a medium densely populated by large-scale vac-
uum field fluctuations. In the background of the large-scale
fluctuations there have developed non-perturbative fluc-
tuations of a smaller size among those instantons which
play a dominating role. The long-wave gluon vacuum field,
which is the background for a selected instanton, may be
of a more general origin, and phenomenologically can be
parameterized by the vacuum correlation functions of the
gluon operators contributing to the corresponding non-
local condensates.

What is important is that at a random (stochastic)
background vacuum field with fixed vacuum expectation
values of the singlet operators the scale invariance of the
effective theory is spoiled already at the quasi-classical
level and the instantons are no longer exact solutions of
the field equations, and the Dirac operator has no zero
modes.

A similar situation has been observed in the stan-
dard electroweak Yang–Mills–Higgs model. In this case,
the background of Higgs field with non-zero vacuum value
〈ϕ〉 and coupling λ affects the instanton configuration [23].
In the presence of (even small) effects violating scale in-
variance of the initial theory, an instanton solution does
not exist at all. Nevertheless, as was stated in [23] and
fairly explained in [24–26], if the Higgs field is rather weak
and some additional constraints are introduced, there may
be constructed an approximate solution, a so-called con-
strained instanton (CI). These constraints limit the degree
of freedom along the size ρ parameter. The constrained
solution at small distances |x| << λ1/2 〈ϕ〉−1 approxi-
mately has the form of an instanton, and at large distances
|x| >> λ1/2 〈ϕ〉−1

>> ρ has the asymptotics of a massive
(gauge boson) particle exp(−g 〈ϕ〉 |x|/λ1/2). In [24] it has
also been noted that the gauge field propagator of the CIs
decays exponentially at large |x| and thus does not affect
the long-range behavior of the theory.

The aim of this section is to show that an analogous
phenomenon takes place in QCD on considering an in-
stanton field AI

µ(x) in the physical vacuum. In distinction
with the Yang–Mills–Higgs model, in pure QCD there is
no Higgs field from the beginning and it is the long-scale
vacuum gluon field, bµ(x), that models a source perturb-
ing an instanton at large distances. The deep reason of this
effect lies in the existence of the quantum anomaly in the
trace of the energy-momentum tensor [27]. It will be shown
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that the presence of this background field, characterized
by its vacuum expectation value 〈(F a

b,µν)2〉b and correla-
tion length R (introduced below), sets the final scale and
defines the deformation of the instanton solution in the
asymptotic region |x| & [〈(F a

b,µν)2〉bR]−1/3 >> ρ. Here
and below, 〈· · ·〉b =

∫
dσ [b] · · · means the average over

non-perturbative random background field weighted with
some measure dσ [b]. This solution is stable against shrink-
ing the instanton to a point if some constraints are added.
By analogy with the solutions analyzed in the Yang–Mills–
Higgs model [24], we shall call these interpolating fields
constrained (or deformed) instanton solutions.

In the following, we analyze the vacuum field configu-
ration of the single (constrained) instanton ACI

µ (x) of fixed
size and orientation in the color space in the background of
the large-scale topologically neutral random vacuum field
bµ(x)2

Aµ(x) = ACI
µ (x, x0) + bµ(x), (7)

with the gauge transformation property

Aµ(x) → U† (x)Aµ(x)U (x) + iU† (x) ∂µU (x) , (8)

where U (x) is a gauge transformation matrix. When one
deals with gauge-non-invariant objects, any convenient
gauge can be chosen. Considering the field ansatz (7), one
has to take the instanton field ACI

µ (x) in the singular gauge
[13,14]

ACI,a,±
sing,µ (x) = 2Oab

I ηb,±
µν (x − x0)ν ϕCI

g (x − x0), (9)

x2ϕCI
g (x)

∣∣
x→0

= 1, ϕCI
g (x)

∣∣
x→∞ = 0.

The last conditions mean that the constrained instanton
has a finite action and a modulo unit topological charge,
but, in general, ceases to be self-dual field. In the coordi-
nate space the instantons in this specific gauge fall off
rapidly enough to provide a weak interaction with the
background field and the quasi-classical approach is justi-
fied. The weakness of the interaction allows us in the fol-
lowing to neglect the back reaction of the instanton on the
background field. As to the non-perturbative background
field, it is convenient to put it in the Fock–Schwinger gauge
[28] with the fixed point coinciding with the instanton cen-
ter due to translational invariance arguments:

(x − x0)µ bµ (x) = 0. (10)

In the following we put the center of the instanton x0 to
the origin of the coordinates, x0 = 0.

As an illustrative model for the background field, one
can keep in mind the self-dual homogeneous vacuum gluon
field ba

µ (x) = (1/2)nabµνxν , bµνbµν = b2, where na is
the orientation vector in color space and bµν is the con-
stant field-strength tensor [30]. The corresponding mea-
sure

∫
dσ [b] =

∫∞
0 dbD (b)

∫
dΩ
∫

dΩc averages over field
amplitude and its orientation in the configuration and
color spaces. This configuration with an infinite correla-
tion length R = ∞ and an infinite topological charge quite

2 A similar model has been considered before in [37].

correctly describes the situation at small and intermedi-
ate distances, comparable with the instanton size, but at
larger distances the effect of the finite correlation length
of the physical background becomes important. The in-
troduction of a finite correlation length can be imagined
as the inclusion of a domain structure in the vacuum [29].
This kind of considerations are basically the stochastic
vacuum model [28]. In the absence of a consistent theo-
retical approach to the large distance dynamics one is lead
to a phenomenological elaboration of the problem.

We assume that at small distances the CI field dom-
inates and the background field bµ (x) is regarded as a
perturbation on ACI

µ (x). At distances much larger com-
pared to the instanton size ρ, the background field bµ (x)
is still weak, but strong enough to deform and suppress
the instanton field.

The field strength can be written as

F a
µν [ACI + b] = FCI,a

µν + F a
b,µν + ∆F a

µν

[
ACI, b

]
, (11)

where FCI,a
µν ≡ F a

µν [ACI], F a
b,µν ≡ F a

µν [b] and

∆F a
µν

[
ACI, b

]
= fabc(ACI,b

µ bc
ν + ACI,c

ν bb
µ),

and the effective Euclidean action of the instanton in the
random background field becomes

SE ≈ 1
4g2

〈∫
d4x

{
FCI,a

µν FCI,a
µν

+∆F a
µν

[
ACI, b

]
∆F a

µν

[
ACI, b

]}〉
b
. (12)

In deriving these expression we have used the color-singlet
properties of the large-scale vacuum on an average〈

F a
b,µν

〉
b

= 0 (13)

and average over the relative orientation of the instanton
and background fields in the color space. We also neglected
higher order interaction terms. These terms effectively will
be accumulated in the form of constraints below and, what
is important in the present consideration, they do not in-
fluence the asymptotics of the solution.

Similar to the Affleck analysis [24], we come to the
conclusion that for a background field configuration bµ(x)
with a fixed non-zero condensate value no instanton solu-
tion exists. This can be seen from the rescaling x → ax,
ACI

µ (x) → a−1ACI
µ (ax), bµ(x) → bµ(ax), preserving the

finite vacuum average
〈
F 2

b,µν

〉
b

= const, under which SE

transforms to

SE → 1
4g2

〈∫
d4x

{
FCI,a

µν FCI,a
µν

+a−2∆F a
µν

[
ACI, b

]
∆F a

µν

[
ACI, b

]}〉
b

(14)

If ACI
µ (x) is a stationary point, then dSE/da = 0 and

the action is minimized by an instanton of vanishing size.
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Thus, given any field configuration we can always rescale
it to get a smaller action, except in the trivial case.

Now, let us consider the problem from the point of
view of the equations of motion for the deformed instan-
ton in the background of large-scale random vacuum fluc-
tuations, which becomes

Dab
µ

[
ACI]FCI,b

µν

+f bacf bkl
(
ACI,k

µ

〈
bc
µbl

ν

〉
b

− ACI,k
ν

〈
bc
µbl

µ

〉
b

)
= 0.(15)

In the Fock–Schwinger gauge the background field has a
representation in terms of its strength

ba
µ(x) =

∫ 1

0
dααF a

b,νµ(αx)xν , (16)

and the bilinear field averages become

〈
ba
µ(x)bb

ν(x)
〉
b

=
∫ 1

0
dα (17)

×
∫ 1

0
dβαβxρxσ

〈
F a

b,ρµ(αx)F b
b,σν(βx)

〉
b
.

In the non-Abelian case the correlator in the integrand of
(17) is not gauge invariant; however, in the Fock–Schwin-
ger gauge this correlator coincides with the gauge-invari-
ant correlator in which the field strengths are connected
by the Schwinger phase factors Ẽ(αx, 0)Ẽ(0, βx) in the
adjoint representation. Thus, in this specific gauge the
gauge-variant left side of (17) can be expressed in terms of
an gauge-invariant quantity. Due to the gauge invariance
the latter correlator admits a physically motivated model;

xρxσ

〈
F a

ρµ(αx)F b
σν(βx)

〉
b

(18)

=
δab

N2
c − 1

〈
F 2

b

〉
b

12
(
x2δµν − xµxν

)
B̃
(
z2)∣∣∣

z=x(α−β)
,

where the function

B̃
(
z2) = D̃

(
z2)+ D̃1

(
z2)+ z2∂D̃1

(
z2) /∂z2 (19)

is defined via the invariant functions D̃
(
z2
)

and D̃1
(
z2
)

parameterizing the gauge-invariant two-point correlator
(2) of the background field strengths, with normalization
D̃(0) = κ̃, D̃1 (0) = 1 − κ̃. The contribution of the back-
ground field to the gluon condensate is denoted by

〈
F 2

b

〉
b.

With these definitions the equations of motion of the CI
field interacting with a random large-scale vacuum fluctu-
ation field can be cast in the form

Dab
µ

[
ACI]FCI,b

µν (x) − Nc
〈
F 2

b

〉
b

24(N2
c − 1)

x2Φ
(
x2)ACI,a

µ (x) = 0,

(20)
where

Φ
(
x2) = 4

∫ 1

0
dα

∫ 1

0
dβαβB̃

[
(α − β)2 x2

]
,

Φ (0) = 1, (21)

and Nc is the number of colors.
Let us discuss the properties of the solution of (20).

In the absence of the background field
〈
F 2

b

〉
b = 0 there

exists an instanton solution (6). For
〈
F 2

b

〉
b small enough,

such that
〈
F 2

b

〉
b � 1/ρ4, we should expect to find a solu-

tion of (20) in perturbation theory in the small parameter〈
F 2

b

〉
b ρ4, which reduces to (6) when

〈
F 2

b

〉
b → 0. However,

such a perturbative solution does not exist. The reason is
that for the higher order perturbation terms appropriate
finite-action boundary conditions at large distances can-
not be enforced [24].

The operators that act on higher order terms possess
a zero mode ∂ACI

µ /∂ρ:

∇µ

(
∇µ

∂ACI
ν

∂ρ
− ∇ν

∂ACI
µ

∂ρ

)
+ i

[
∂ACI

µ

∂ρ
, Fµν

[
ACI]] = 0,

(22)
which determines a priori the behavior of perturbations
around instanton terms at infinity. A way of getting around
this difficulty [24] is to extremize the action SE, see (12),
subject to a constraint. The choice of an explicit form of
the constraint is quite arbitrary. In [24] has been proposed
a global constraint of the general form

Cnl
constr (A) =

∫
d4x

[
Od (A) − Od

(
ACI)] = 0,

where the gauge-invariant local operator Od(A) has a ca-
nonical dimension d > 4. The relevant stationary config-
uration will be a solution of the equations of motion (20)
but with the constraint term added into the right-hand
side

δSE (A)
δAµ (x)

∣∣∣∣
ACI

µ

= σ
δCconstr (A)

δAµ (x)

∣∣∣∣
ACI

µ

. (23)

The Lagrange multiplier σ in (23) is to be determined
order by order in perturbative theory in

〈
F 2

b

〉
b ρ4, which

provides the correct boundary conditions for the higher
order terms. The constrained instanton ACI is the unique
solution of (23) obtained by this procedure, the ACI solu-
tion goes to (6) when

〈
F 2

b

〉
b ρ4 → 0. Unfortunately, this

kind of constraints is nonlinear and the higher order terms
in
〈
F 2

b

〉
b ρ4, depending on the constraint, are difficult to

evaluate in practice.
Another way has been suggested in [26], where a linear

constraint of the general form

Cl
constr (A) =

∫
d4xtr

{(
Aµ (x) − ACI

µ (x)
)
fρ

µ (x)
}

= 0 (24)

has been introduced. It has been proposed, [26], instead
of fixing the constraint to solve the equation for ACI

µ (x),
which is almost an impossible task, to choose ACI

µ (x) first
and then find the constraint fρ

µ (x) itself by substituting
ACI

µ (x) into the left-hand side of the constrained equation
(23). In this way, the freedom in choosing the constraint
can be used to find it by a given solution.
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One can also restrict oneself by considering only the
local operators defining constraints that fall at infinity
more rapidly than the interaction term in (20). Under
this condition, it is easy to obtain the behavior of the
instanton enveloped in the background field at distances
far from the instanton center. This large-distance asymp-
totics of CI, like its behavior at small distances AI

µ (x; ρ),
is a constraint-independent part of the solution.

We are interested in the asymptotic behavior of the
function Φ

(
x2
)
, see (21), where the interaction term be-

comes dominant over the instanton self-interaction. It is
nice that the leading asymptotics of Φ

(
x2
)
, Φ

(
x2
) ∼

R/|x|, is independent of a particular form for the func-
tion B̃(z2), since it has a specific argument dependence
z2 = (α − β)2x2. Let us illustrate this property using a
few natural ansätze for this function

B̃M

(
x2) = R2/

(
x2 + R2) , (monopole)

B̃E

(
x2) = exp(− |x| /R), (exponential)

B̃G

(
x2) = exp(−x2/R2), (Gaussian) (25)

that yield, respectively, (see Appendix B)

Φas
(
x2) |x|→∞→ 8

3
aΦ

R

|x| ,

where aΦ = O(1) =


π
2 monopole,
1 exponential,√

π
2 Gaussian.

(26)

The exponential ansatz (modulo powers) appears as an
asymptotic expression of the solution of the Yang–Mills–
Higgs model [24,25] and also is used in the parameteriza-
tion of the large-scale behavior of lattice QCD data [7].
The monopole form resembles the asymptotic behavior of
the SI correlator [15], where, in fact, it has a steeper de-
crease like 1/x4.

The asymptotic behavior of the instanton solution de-
formed by large-scale vacuum fluctuations at large Eu-
clidean distances |x| → ∞ can be derived from the analy-
sis of the equations

∂µ(∂µACI
ν − ∂νACI

µ ) − η3
g |x|ACI

µ = 0, (27)

with

ηg =
(

aΦNc

9 (N2
c − 1)

R
〈
F 2

b

〉
b

)1/3

.

Due to the decreasing character of the field asymptotics,
ACI

µ → 0 at |x| → ∞, only linear terms in the short-wave
CI field ACI

µ are kept in the kinetic part of equation (27)3.

3 At this point we have to note that the influence of the in-
stanton ensemble on the instanton profile has been discussed
in [13]. The authors found that this interaction perturbs the
self-interaction part by the term µ2

gAµ. It turns out that nu-
merically the coefficient µ2

g strongly depends on the instanton–
anti-instanton ansatz chosen [21] and, as is seen from (27), has
a subleading behavior in the limit of large x.

For the profile function ϕas
g (x2) (defined by ηa

νµ ≡ η+a
νµ in

the following) we have

ACI,a
µ (x) = ηa

νµ

xν

x2 ϕas
g
(
x2) , (28)

we find from the asymptotic equation (27) the large-dis-
tance solution

ϕas
g
(
x2) ∼ K4/3

[
2
3

(ηg |x|)3/2
]

, (29)

where Kν(z) is the modified Bessel function with index ν
having the asymptotic behavior Kν(z) → (π/2z)1/2e−z as
z → ∞. We have to note that in the case of the homo-
geneous background field with infinite correlation length
one gets an equation similar to (27), but with the coeffi-
cient proportional to x2 in the last term, which results in
a Gaussian form of the asymptotics [27].

The weakness of the instanton–background interac-
tion allows us to assume that the dimensionless param-
eter αg ≡ ηgρ is small. This means that the region where
the instanton field dominates (small distances), and the
region where the background field dominates (large dis-
tances), are well separated and the large distance effects
do not destroy the instanton. Then, the overall constant
is determined by matching at distances ρ � |x| � η−1

g

the leading terms of the expansions of ACI
µ (x) at small

distances, which is an instanton AI
µ(x), and at large dis-

tances, which is an asymptotic term; see (28) and (29).
We have

ACI,a
µ (x) = ηa

νµ

2xν

x2 a4/3α
2
gK4/3

[
2
3

(ηg |x|)3/2
]

,

where a4/3 =
2

Γ (1/3) 31/3 (30)

is the normalization coefficient and Γ (z) is the Gamma
function.

Thus, we find that in the singular gauge the CI so-
lution has an exponential decreasing character (30) far
from the instanton center. This behavior sharply differs
from the asymptotics decreasing with a power of SI (6).
This modification of the behavior follows from the fact
that the instanton solution is considered in the physical
vacuum populated by large-scale gluon field fluctuations.
The background field modifies the long-distance behavior
of the instanton and leads to the appearance of the “sec-
ond scale” parameter Λg = 1/ηg [15] in the gluon distri-
butions. At the same time, the effect of long-wave vacuum
fluctuations is not very essential for the behavior of the
instanton at short distances.

Now we are looking for the constrained solution of (20)
in the ansatz form

ACIa
µ (x) = 2ηa

νµxνϕg
(
x2) , (31)

which has the following behavior at small and large dis-
tances:

ϕg
(
x2) =

1
x2
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·


ρ2

(x2+ρ2) + (ηg |x|)3 ϕ(1)

(
ρ

|x|
)

· · ·
at |x| → 0,

a4/3α
2
gK4/3

[
2
3 (ηg |x|)3/2

]
+
(

ρ2

x2

)2
ϕ(1) (ηg |x|) · · ·

at |x| → ∞,

(32)

where the forms of the expansions can be deduced from
expanding the leading terms with respect to ρ/ |x| and
ηg |x|, respectively. The first terms in the expansions are
exact and constraint-independent ones; however, as was
shown in [24], all higher order terms are dependent on the
constraint chosen.

The condition of finiteness of the action, which is also
a constraint-independent one, should be imposed on the
desirable solution. To reach this goal, let us rewrite the CI
field strength as

FCIa
µν (x) = 4

[
ηa

µνω1 (x) +
(
xµηa

νρ − xνηa
µρ

)
xρω2 (x)

]
(33)

with

ω1 (x) = x2ϕ2
g
(
x2)− ϕg

(
x2) ,

ω2 (x) = ϕ2
g
(
x2)+

∂ϕg
(
x2
)

∂x2 , x2
ρ = x2 + ρ2. (34)

to be used below. With this parameterization we have the
action

SCI
E =

1
4g2

∫
d4x

[
F a

µν (x)F a
µν (x)

]CI (35)

with the action density[
F a

µν (x)F a
µν (x)

]CI = 96
[
ω2

1 (x) + ω2
3 (x)

]
, (36)

where
ω3 (x) = x2ω2 (x) − ω1 (x) .

Now, if we use the singular gauge for ACI
µ , then, to guar-

antee finiteness of the action, the following condition has
to be fulfilled:

x2ϕg
(
x2) |x2→0 → 1 + O

(
x2) . (37)

For further reference we here present the well-known ex-
pressions for the SI profiles in the singular and regular
gauges:

ϕsing,I
g

(
x2) =

ρ2

x2x2
ρ

, ϕreg,I
g

(
x2) =

1
x2

ρ

, (38)

ωsing,I
1 (x) = − ρ2(

x2
ρ

)2 , x2ωsing,I
2 (x) = 2ωsing,I

1 (x) , (39)

ωreg,I
1 (x) = − ρ2(

x2
ρ

)2 , ωreg,I
2 (x) = 0, (40)

and gauge-independent expressions for the density action
and the action itself:[

F a
µν (x)F a

µν (x)
]I =

192ρ4(
x2

ρ

)4 , SI
E =

8π

g2 . (41)

Fig. 1. The constrained instanton profile functions
x2ϕg(|x| /ρ) (31), corresponding to the ansatz (44), at
different values of the parameter (ρηg)2: (ρηg)2 = 0 solid line
(instanton case), (ρηg)2 = 0.5 short dashed line, (ρηg)2 = 3
long dashed line

By using the asymptotic properties of the CI solution (32)
and the finite-action condition (37), which are constraint
independent, we are able to construct the ansatz. Cer-
tainly, this procedure is not unique and in principle one
can impose further physical requirements to constrain the
behavior of the solution in the intermediate region. These
details, however, can be taken into account by choosing
proper constraints. Thus, the freedom in choosing the con-
straint can be used to find it by a given solution, instead
of solving complicated equations [26].

Let us consider the following ansätze for the CI profile
written in the singular gauge

ϕ1
(
x2) =

1
x2

K4/3 [zρ,x]
K4/3 [zρ,0]

, (42)

ϕ2
(
x2) =

ρ2
(
x2
)

x2x2
ρ

, (43)

ϕ3
(
x2) =

ρ2
(
x2
)

x2
(
x2 + ρ2 (x2)

) , (44)

where we have introduced the notation

zρ,x =
2
3
η3/2
g
(
x2 + ρ2)3/4

,

ρ2 (x2) = a4/3α
2
gx

2K4/3 [z0,x] , ρ2 (0) = ρ2.

Note that all ansätze have easily identifiable instanton pa-
rameters. By translational invariance the center of CI can
be shifted in (42)-(44) from the origin to an arbitrary posi-
tion x0: x → x−x0. The CI profile functions corresponding
to these ansätze are shown in Figs. 1 and 2 along with the
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Fig. 2. The instanton (solid line) and constrained instanton
profile functions x2ϕg(|x| /ρ) (31) corresponding to different
ansätze: (42) dotted line, (43) short dashed line, (44) long
dashed line, at the large value of the parameter (ρηg)2 = 3

instanton profile (38). Figures 1 and 2 display the depen-
dence of the profile function on the external field param-
eter ρηg and on the form of the ansatz, respectively. To
make the difference more clear, we also take for illustra-
tion a large value of the parameter (ρηg)

2 = 3. We see that
if at small distances the CI is close to the instanton form,
then at large distances this solution has an exponential
asymptotical behavior instead of a power-like one for the
instanton.

The last two ansätze are similar to the ones suggested
in [26], where preference has been given to the ϕ3

(
x2
)

form, since it has better convergence properties in the ex-
pansion of CI; see (32). Moreover, with this profile the
constrained solution in the regular gauge looks similar to
the SI case

ϕreg,CI
3

(
x2) =

1
x2 + ρ2 (x2)

.

In order to pass from the constraint instanton in a singular
gauge to the instanton in a regular gauge one can translate
the general gauge transformation (8) into the form

ACI
µ (x) → Ω† (x)ACI

µ (x)Ω (x) + iΩ† (x) ∂µΩ (x) , (45)

bµ(x) → Ω† (x) bµ(x)Ω (x) ,

with the transformation matrix

Ω (x) =
iτ−

µ xµ

|x| .

We have numerically calculated the dependence of the CI
classical action, (35) and (36), on the instanton size ρ. This
dependence for the three ansätze (42), (43) and (44) is
shown in Figs. 3 and 4. We have to stress that the profiles
of the field ACI

µ and the action SCI
E depend on the choice

of constraint. However, the full effective action, with the

Fig. 3. The density action of the instanton (solid line) and con-
strained instanton G2(x2) ≡ ρ4/192F Ia

µν (x) F Ia
µν (x), see (36),

as a function of |x| /ρ corresponding to different ansätze: (42)
dotted line, (43) short dashed line, (44) long dashed line, at
the value of the parameter (ρηg)2 = 1

terms coming from the Jacobian included, is constraint
independent [26]. The weak dependence of the action, SCI

E ,
on the profiles ϕ1,2,3

(
x2
)

(see Fig. 4) indicates that in the
regions of the parameters ρηg . 1, the influence of these
additional terms is small and the exponential part of the
action, SCI

E , can be used as a good approximation. We see
in Fig. 4 that the CI action is larger than the instanton
one and monotonically grows with the instanton size. It
is natural because the CI “solution” is not self-dual and
does not realize the minimum of the action. Instead, it
represents the bottom of the valley parameterized by the
quasi-zero mode ρ.

We are not going to discuss further details in the con-
struction of the total effective CI action that takes into ac-
count small quantum oscillations around the non-pertur-
bative configuration (7) and the interaction of constrained
instantons, and postpone these for a further publication.
Just let us point out that other effects dominating the ef-
fective action at small ρ come from the running coupling
constant g2 (ρ) and the path integral measure over the size
of the instanton dρ/ρ5. It is well known that in the model
of the coupling constant, which freezes it to a constant at
some large ρ0, the corrected action

STOT
E (ρ) =

1
4g2 (ρ)

∫
d4x

[
F a

µν (x)F a
µν (x)

]CI + 5 ln ρ,

as a function of the instanton size, has a minimum. The
position of the minimum is correlated with the freezing
parameter ρ0, which can be chosen to provide the value
ρmin ≈ 2 GeV−1, and the environment of the large-scale
vacuum fluctuations makes the minimum more prominent
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Fig. 4. The classical action of the instanton (solid line) and
constrained instanton SCI, (35), as a function of ρηg cor-
responding to different ansätze: (42) dotted line, (43) short
dashed line, (44) long dashed line. The action is given in units
of 8π2/g2

(see [31] for a recent discussion of similar results). How-
ever, the typical CI action is rather large, the numer-
ical value being around 25. This means that the con-
figurations with a small number of instantons and anti-
instantons are not important statistically and this sug-
gests that the interacting instanton and anti-instanton
ensemble could be a more important type of configura-
tion. The leading interaction term of a widely separated
instanton–anti-instanton pair in the physical vacuum as
described by (42)–(44) falls with separation L like exp(−4
/3(ηgL)3/2) and differs from the power-like decreasing be-
havior found in [19,13] in the unconstrained case. In the
following, considering the non-local properties of a gluon
condensate, we accept that the instanton liquid is formed
due to the instanton–anti-instanton interaction and the in-
stanton density nc and size ρc are fixed [14]: nc ≈ 1 fm−4,
ρc ≈ 1/3 fm.

3 Short-range vacuum correlators
in the constrained instanton model

Within the model considered, the full gluon correlator may
be conventionally written by using the expression for the
field strength (11) as〈

: Fµν [ACI + b] (x)Fρσ[ACI + b] (y) :
〉

=
〈
FCI

µν (x)FCI
ρσ (y)

〉
+ 〈: Fb,µν (x)Fb,ρσ (y) :〉

+
〈
: ∆Fµν [ACI, b] (x)∆Fρσ[ACI, b] (y) :

〉interf
, (46)

where the brackets 〈〉 mean averaging over vacuum fluc-
tuations (7) and we do not display Schwinger phase fac-
tors explicitly. The last term represents the interference of
short- and large-scale fields and will be discussed below.
For the large-scale correlator (19) we have already sug-
gested the model for the invariant function B̃(x2) in (25).
Now, let us calculate the short-range part of the gluon
correlator.

Let us construct the correlator Dµν,ρσ(x − y) of the
gluonic strengths (1) in the quasi-classical approximation
by using the CI solutions given by (31) and (42)–(44).
We will use a reference frame in which the instanton sits
at the origin and one has a relative coordinate (x − y)µ

with respect to the position of the instanton center that is
parallel to one of the coordinate axes, say µ = 4, this one
serving as a “time” direction (i.e.,

→
x − →

y = 0, x4 − y4 =
|x − y|), and reduce the path-ordered exponential to an
ordinary exponential

Ê(x, y) = P exp
(

i
∫ y

x

ACI
µ (z)dzµ

)
= L† (x)L (y) (47)

with

L (x) = exp

∓i
→
τ

→
x∣∣∣→x ∣∣∣α

(∣∣∣→x ∣∣∣ , x4

)
= ∓iτ±

µ · x̃µ (x) , (48)

where

α
(∣∣∣→x ∣∣∣ , x4

)
=
∣∣∣→x ∣∣∣ ∫ x4

0
dtϕg

(∣∣∣→x ∣∣∣2 + t2
)

, (49)

τ± = (∓i, τ), x̃0 (x) = cos α (x) ,

x̃i (x) =
(
xi/
∣∣∣→x ∣∣∣) sinα (x) . (50)

The factor L (x) coming from the Schwinger exponent can
be accumulated in the definition of the field. This repre-
sentation of the field may be called the axial gauge repre-
sentation Aµ(z)nµ = 0, since in this gauge with the vector
nµ = xµ − yµ the Schwinger factor is Ê(x, y) = 1.

In the CI background the bilocal gluon correlator ac-
quires the form

Dµν,ρσ(x) = 〈: Tr
(
F(ax)µν(0)F(ax)ρσ(x)

)
:〉

=
∑
±

n±
c

∫
d4z (51)

×
∫

dΩ Tr
(
F±

(ax)µν(z − x

2
)F±

(ax)ρσ

(
z +

x

2

))
,

where n±
c is the effective instanton/anti-instanton density,

z is the collective coordinate of the instanton center and
Ω is its color space orientation.

To extract invariant functions D
(
x2
)

and D1
(
x2
)

it
is easier first to average over the instanton orientations in
the color space and take the trace over color matrices by
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using the relations∫
dΩOa

b O+c
d =

1
Nc

δa
dδc

b , (52)

τ±
µ τ∓

ν = δµν + iηa,∓
µν τa, τaτ b = δab + iεabcτ c.

Then it is convenient to define the combinations of func-
tions D

(
x2
)

and D1
(
x2
)

[32]

A
(
x2) = δµρδνσ

Dµν,ρσ(x)〈
0
∣∣F 2

µν

∣∣ 0〉CI

= D
(
x2)+ D1

(
x2)+

1
2
x2 ∂D1

(
x2
)

∂x2 , (53)

B
(
x2) = 4

xµxρ

x2 δνσ
Dµν,ρσ(x)〈
0
∣∣F 2

µν

∣∣ 0〉CI

= D
(
x2)+ D1

(
x2)+ x2 ∂D1

(
x2
)

∂x2 ,

taking the boundary condition D(0) + D1(0) = 1 and the
asymptotic conditions D(∞) = D1(∞) = 0. After direct,
but lengthy calculations we come to the expressions for
the form factors A and B:

A(x2)

=
8
π

ND

∫ ∞

0
drr2

×
∫ ∞

0
dt
{

[ω1 (z+) ω1 (z−) + ω3 (z+)ω3 (z−)]

× (3 − 4 sin2(αz)
)

(54)
−2ω2 (z+) ω2 (z−)
× [r2x2 (1 − 2 sin2(αz)

)− rx (z+ · z−) sin(2αz)
]}

,

B(x2)

=
16
π

ND

∫ ∞

0
drr2

×
∫ ∞

0
dt
{
ω1 (z+) ω1 (z−)

(
3 − 4 sin2(αz)

)
(55)

−ω1 (z+)ω2 (z−)
× [z2

− + 2t2−
(
1 − 2 sin2(αz)

)
+ 2rt− sin(2αz)

]
−ω2 (z+)ω1 (z−)
× [z2

+ + 2t2+
(
1 − 2 sin2(αz)

)− 2rt+ sin(2αz)
]

+ω2 (z+)ω2 (z−)
× [z2

+z2
− + 2t+t− (z+ · z−)

× (1 − 2 sin2(αz)
)

+ 2rxt+t− sin(2αz)
]}

,

where z± = (r, t±), t± = t±x/2, the forms ω1 (z) , ω2 (z) ,
and ω3 (z) are defined in (34), ND is the normalization
factor

N−1
D = 6

∫ ∞

0
dyy3 (ω2

1 (y) + ω2
3 (y)

)
, (56)

and the phase factor

αz = r

∫ x
2

− x
2

dτϕg

(
r2 + (t + τ)2

)
,

Fig. 5. The invariant functions D (top lines) and D1 (bottom
lines) (all normalized by D(0)) versus physical distance x, for
the instanton size ρ = 0.3 fm and parameters (ρηg)2 = 0 (solid
lines) and (ρηg)2 = 1 (dashed lines)

reflects the presence of the Ê exponent in the definition
of the bilocal correlator. These expressions for the field-
strength correlators are general for any field given in the
form (31). The gauge invariance of the form factors A(x2)
and B(x2) can explicitly be checked for (54) and (55) by
transforming, for example, the field Aµ from the singular
to the regular gauges, see (45). The expressions for A(x2)
and B(x2) may be considered as generating functions to
obtain condensates of higher dimensions in the instanton
model approach. From a technical point of view this pro-
cedure is more convenient than their direct calculations
[32,15].

In the SI approximation the form factors BI(x2) =
AI(x2) reproduce the expression, see (21) from [15], for the
gauge-invariant correlator. As has been shown in [15] (see
also [34]), in the SI approximation the term with the sec-
ond Lorentz structure, D1(x2), parameterizing the gluon
correlator (2) does not appear. This fact is due to the
specific topological structure (self-duality) of the instan-
ton solution. Both Lorentz structures arise in the r.h.s. of
(51) if one takes into account the background fields.

The invariant functions D(x2) and D1(x2) are deter-
mined numerically by solving (53) and are plotted in Fig. 5
in coordinate space and in Fig. 6 in momentum space. The
constant κ defining the relative weight of the D functions
(D (0) = κ, D1 (0) = 1 − κ) depends on the background
field-strength parameter ηgρ and is close to one in the
region of reasonable physical parameters. It is equal to
κ = 1 at (ηgρ)2 = 0 (SI case), κ = 0.997 at (ηgρ)2 = 0.1
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Fig. 6. The invariant functions D̃(p) as a function of ρ|p| cor-
responding to the ansatz (44), at different values of the param-
eter (ρηg)2 : (ρηg)2 = 0 solid line (instanton case), (ρηg)2 = 0.5
short dashed line, (ρηg)2 = 3 long dashed line

and κ = 0.926 at (ηgρ)2 = 3. In all the cases the param-
eter κ is close to one in accordance to the fits of lattice
data [33]. This means that in a weak background field the
dominant role of the D(x2) function remains as in the SI
case; it is close to the SI form at small distances and de-
cays exponentially rapidly at large distances. The D1(x2)
function is small and positive everywhere; its behavior is
very sensitive not only to the external field but also to the
gauge phase factor effect4. In Appendix A we show that
the reason for the smallness of the D1(x2) function is an
“almost” self-duality property of the CI solutions. Both
the invariant functions have two zeros at large distances
and at very large x develop positive asymptotics

D(x2), D1(x2) ∼ |x|−3/4 exp
(
−0.473 (ηg |x|)3/2

)
, (57)

where ηg 6= 0 and the constant in the exponent is found
numerically.

In order to have contact with the QCD vacuum phe-
nomenology and specify further the instanton-induced mo-
del of the gluon correlator, let us discuss the contributions

4 In [34], in the calculations of the invariant functions D, D1

based on the instanton–anti-instanton ansatz both the influ-
ence of the physical vacuum on the instantons and the gluon
correlators as the effect of the P exponential factor on the in-
variant functions has been ignored. As a result, a negative D1

has been obtained in [34]. However, both facts are important
in determining the correct norm and forms of the invariant
functions; in particular, in obtaining a small D1

of different terms in (46) to the gluon condensate〈
: Fµν [ACI + b] (0)Fµν [ACI + b] (0) :

〉
=
〈
FCI

µν (0)FCI
µν (0)

〉
(58)

+ 〈: Fb,µν (0)Fb,µν (0) :〉
+
〈
: ∆Fµν [ACI + b] (0)∆Fµν [ACI + b] (0) :

〉interf
.

The background contribution to the gluon condensate

〈: Fb,µν (0)Fb,µν (0) :〉 =
〈
F 2

b

〉
b (59)

serves as a parameter of the model and, by assumption, is
much smaller than the CI contribution given by〈

FCI
µν (0)FCI

µν (0)
〉

= 32π2ncN
−1
D , (60)

where N−1
D ≈ 1 (see Fig. 4). The interference term after

averaging over the relative color orientations and using
relations (13) and (17) acquires the form〈

: Fµν [ACI + b]Fµν [ACI + b] :
〉interf

(61)

=
Nc

16 (N2
c − 1)

(
32π2nc

) 〈
F 2

b

〉
b

∫ ∞

0
dzz7ϕ2

g
(
z2)Φ(z2),

where Φ(z2) is defined in (21) (the explicit forms of Φ(z2)
are outlined in Appendix B).

The interference term depends on two dimensionless
parameters αg = ρcηg and β = ρc/R and the background
field condensate can be parameterized as

〈
F 2

b

〉
b ρ4

c =(
9
(
N2

c − 1
))

/(aΦNc)α3
gβ. The instanton size ρc occurs in

the last formula with a high power and leads to indef-
initeness of the factor of order 2 in the relation of the
external field condensate to the parameters αg and β. To
reduce this uncertainty, we can use the physical informa-
tion about the vacuum properties provided by the QCD
SRs and lattice QCD. Indeed, as has been shown in [15],
in the SI case there is a relation between the instanton size
and the average virtuality of the quarks in the vacuum; see
(3). The value of the average quark virtuality has been es-
timated in a QCD sum rule analysis, λ2

q = 0.5±0.05 GeV2,
in [16]; λ2

q = 0.4 ± 0.1 GeV2 in [17], and from the lattice
QCD calculations λ2

q = 0.55 ± 0.05 GeV2 in [18]. The re-
lations (3) remain good approximations in the CI case if
the external field does not strongly deform the instanton.
Numerical calculations of λ2

g, defined in (3), lead to the
estimates

λ2
g = 4.8

1
ρ2
c
(α2

g = 0), λ2
g = 5.7

1
ρ2
c
(α2

g = 1),

λ2
g = 7.6

1
ρ2
c
(α2

g = 3). (62)

We show below that the physically motivated background
field has a strength parameter αg ≤ 1 and thus the value
of λ2

g increases not more than 20%.
The relation for λ2

q in (3) can be used to get the scale
for the background field condensate〈

F 2
b

〉
b =

9
(
N2

c − 1
)

4NcaΦ

(
λ2

q

)2
α3

gβ
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Fig. 7. The interference term contribution to the gluon
condensate normalized by the instanton contribution
Fµν [AI ]Fρσ[AI ] = nc32π2 as a function of the large-scale
vacuum fluctuation correlation length 1/β = R/ρc and its
strength parameter αg = ηgρc

and we accept in the following that

λ2
q = 0.5 GeV2.

What is the expected range for the parameters αg and β?
By analogy with the instanton liquid vacuum, the parame-
ter β can be interpreted as the ratio of the instanton size to
the inter-instanton distance and it is adjusted by β ≈ 1/3.
Then the estimate of the upper limit for the strength pa-
rameter αg follows from the assumption that the contribu-
tion of the background field to the total gluon condensate〈
0
∣∣F 2
∣∣ 0〉

total
≈ 1 GeV4 [22] is quite small. This assump-

tion reduces the influence of the model dependent part
of correlator and leads to the bound αg < 1, or for the
dimensional parameter, η2

g = α2
gλ

2
q/4, ηg < 0.35 GeV. In

Fig. 7 we present the values of the interference term as a
two parametric plot and see that its contribution to the
gluon condensate is small if the short-range and large-
scale fluctuations are well separated: αg < 1 and β � 1.
For completeness in Appendix B we present the small in-
terference contributions to the invariant forms A(x2) and
B(x2).

Thus, we construct the model of the gluon correla-
tors. Within this model the invariant functions A(x2) and
B(x2) are the sum of the short-range instanton-induced
contributions (54) and (55) multiplied by the weight fac-
tor 32π2nc/

〈
0
∣∣F 2
∣∣ 0〉

total
and the long-range contribu-

tion (19) modeled by (25) with the weight factor
〈
F 2

b

〉
b /〈

0
∣∣F 2
∣∣ 0〉

total
. The parameters of the model are the av-

erage instanton size ρc ≈ 0.3 fm, the effective instanton
density nc ≈ 1 fm−4, the strength

〈
F 2

b

〉
b ≤ 32π2nc and

the correlation length R ≈ 3ρc of the background field.
The first two parameters are estimated within the instan-
ton liquid models, being in the dilute liquid limit ex-
pressed through the vacuum averages: ρ2

c = 2λ−2
q and

nc = (2πI/Nc)
(
|〈qq〉|2 /λ2

q

)
, where the numerical con-

stant I ≈ 0.6 [35]. The latter relation is a consequence of
the gap equation [13]. The form of the short-range correla-
tor is defined by ρc at small distances and by the long-scale
parameter ηg at large distances. The form of the long-
range correlator at large distances can be motivated by
the results obtained in the dual effective model of QCD
[8], where they exponentially decrease (modulo powers)
similar to the exponential ansatz in (25). Based on the re-
sults of the dual model and lattice measurements one can
expect that A(x2) ≈ B(x2) for the long-range part of the
correlator.

The field-strength correlators have been studied on the
lattice in [7,10]. On the lattice the following two combi-
nations of invariant functions have been measured:

D⊥
(
x2) = D

(
x2)+ D1

(
x2) ,

D||
(
x2) = D

(
x2)+ D1

(
x2)+ x2 ∂D1

(
x2
)

∂x2 ,

where D⊥
(
x2
)

= 2A
(
x2
)−B

(
x2
)

and D||
(
x2
)

= B
(
x2
)

in terms of the combinations defined in (53). The lattice
measurements of the field-strength correlators are also ob-
tained with the straight line path in the Schwinger ex-
ponent. The direct comparison of the model calculations
with the lattice data is a delicate problem, since the used
parameterization is rather conventional in separating the
residual perturbative tail (divergent term ∼ x−4) from the
non-perturbative part (pure exponential finite term). As
a result, the fits with ad hoc chosen parameterizations are
very unstable with respect to the extraction of the quanti-
ties of physical interest: the correlation lengths, the gluon
condensate, etc. [33]. The reason is that the perturba-
tive part is strongly divergent (as seen from lattice data),
its contribution at small distances would be strongly de-
pendent on the parameterization procedure. On the other
hand, by construction we calculate the non-perturbative
part of the correlators with perturbative contributions
subtracted. In the future, it would be quite desirable to
make a new fit to the lattice data using (54) and (55), as
an input for the non-perturbative part of the correlators.

At the present stage, we restrict ourselves only to a
few qualitative remarks. In [33], the ranges of values of
some physical quantities which can be fitted from the lat-
tice data according to different parameterizations were
discussed. The correlation length, the gluon condensate
and the normalization of invariant functions have been
analyzed. As has been noted above, the normalization of
invariant functions κ, consistent with small D1

(
x2
)
, is in

agreement with the instanton model and with the fact
that the value of the gluon condensate serves as a free
model parameter. The values of the gluon condensate ex-
tracted from the fits to the lattice data are very sensitive
to the parameterization used, being within the interval
〈: (αs/π)F a

µνF a
µν :〉 = (0.005 − 0.03) GeV4. In the lattice

“full QCD” fit of the average correlation length lG of the
gluon strength, defined as [33]

lG =
1

D (0)

∫ ∞

0
dxD

(
x2) , (63)
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one finds the range lG ≈ 0.35–0.45 with lattice quark mass
amq = 0.01 and lG ≈ 0.3–0.4 fm with amq = 0.02, where
a is the lattice unit. One can expect, following a linear
extrapolation, that in the chiral limit amq → 0, lG ≈ 0.4–
0.5 fm. Now let us omit an important but unsolved prob-
lem about the difference of lattice and CI renormalization
schemes and norms, to make a rather rough comparison
of the corresponding results. The instanton model pre-
dicts for the same quantity: lG = 0.43 fm at ρcηg = 0 (SI),
lG = 0.37 fm at (ρcηg)

2 = 1, lG = 0.31 fm at (ρcηg)
2 = 3.

Thus, the predictions of the instanton model are in quali-
tative agreement with information extracted from the lat-
tice data, again under the condition αg ≡ ρcηg < 1.

4 Conclusions

The instanton model provides a way of constructing the
non-local vacuum condensates. We have obtained the ex-
pressions for the non-local gluon 〈: TrFµν(x)Ê(x, y)F ρσ(y)
Ê(y, x) :〉 correlator beyond the single instanton (SI) ap-
proximation[15]. They have consistent properties both at
short and at large distances. The model constructed pre-
dicts the behavior of the non-perturbative part of the
gluon correlation functions in the short and intermediate
region, assuming that it is dominated by the instanton
vacuum component.

To this end, we have suggested that the instanton
ACI

µ (x) is developed in the physical vacuum field bµ(x) in-
terpolating large-scale vacuum fluctuations. We have found
that at small distances the instanton field dominates, and
at large distances it decreases exponentially. We did not
assume any particular properties of the long-wave vacuum
field bµ(x) but managed to reduce the effect to certain phe-
nomenological quantities, namely, the correlation function
B̃(x2) determined by its strength

〈
F 2

b

〉
b and the correla-

tion length R. Within this model, by averaging over ran-
dom color vector orientations of the background field with
respect to the fixed instanton field orientation, we have
found (20) governing the deformation of the instanton un-
der the influence of the weak background vacuum field.
Following the idea due to Affleck we have shown that, to
stabilize the instanton, we need to put constraints on the
system. Next, we have found the constraint-independent
asymptotics of the instanton solution at large distances,
given by (28) and (29), where it is exponentially sup-
pressed,

ACIa
µ (x) ∼ 2ηa

νµxν

(
(ρλg)

2
)

/(x2 |x|3/4)

× exp
[
−(2/3) (ηg |x|)3/2

]
,

unlike the power decreasing SI. It is important to note that
the form of this asymptotic behavior is also independent
on the model for the background field, and the driven pa-
rameter ηg ∼ (

Nc/
(
9
(
N2

c − 1
))

R
〈
F 2

b

〉
b

)1/3 only weakly
depends on it. Assuming that the external field is weak,
the CI profile function is close to the SI profile at dis-
tances smaller than ρc and it decreases exponentially at

distances larger than η−1
g (see (1)). In particular, this re-

sult means that the leading interaction term of a widely
separated instanton–anti-instanton pair in the physical
vacuum decays exponentially with separation and differs
from the dipole interaction term found previously in an
unconstrained model. The knowledge of the constraint-
independent parts of CI allowed us to construct the so-
lution in the ansatz (31) with the profile functions (42)–
(44). As seen from Figs. 2,3 and 4, the profile of the CI
and its action are practically independent of the choice of
the ansatz if the interference parameter is in the region
ρcηg < 1, where our considerations are justified.

Then, for an arbitrary classical gauge field of the form
ACIa

µ (x) = 2ηa
νµxνϕg

(
x2
)
, we have found the expressions

(54) and (55) for the combinations of gauge-invariant func-
tions D

(
x2
)

and D1
(
x2
)
, which parameterize the gluon

field-strength correlator. These expressions generalize the
previously known expressions for the SI model [15]. The
correlators have been calculated numerically. It turns out,
at a reasonable set of parameters, guaranteeing the small-
ness of the large-scale vacuum field fluctuations, that the
D
(
x2
)

structure is close to the SI induced function with
the exponential asymptotics being developed at large dis-
tances5. At the same time, the D1

(
x2
)

structure is about
two orders smaller than the D

(
x2
)

function at any rea-
sonable choice of the parameter ρcηg. As is explained in
Appendix A, the reason is that in the dilute vacuum the
CIs are “almost” self-dual. The relative strength of the
invariant functions D

(
x2
)

and D1
(
x2
)

is very sensitive
to the accepted physical picture. The lattice data are in
qualitative agreement with predictions of the constrained
instanton model. This means, in particular, that in the
interpretation of the lattice data a better justified param-
eterization for the correlation functions can be used. It
allows one to extract from the data the values of phys-
ical interest and separate the perturbative tail from the
non-perturbative contribution. Moreover, due to the fast
decay of the CI induced part of the correlators, the expo-
nential decay observed in the lattice calculations can be
attributed to the background component of the vacuum
field, or can be described by some other field theoreti-
cal approaches [8,9]. On the other side, the SI model is
inconsistent with the large-distance behavior. The non-
perturbative part of the invariant functions A(x2) and
B(x2) are the sum of the short-range instanton-induced
contributions (54) and (55), multiplied by the weight fac-
tor nc32π2/

〈
0
∣∣F 2
∣∣ 0〉total, and the long-range contribu-

tion (19), modelled by the exponentially decreasing func-
tion (25) with the weight factor

〈
F 2

b

〉
b /
〈
0
∣∣F 2
∣∣ 0〉total.

The constrained instanton model introduces two char-
acteristic scales (correlation lengths). One is related to
the short distance behavior of the correlation functions
and the other with the long-range distance behavior. The
first one, λ−1

g , is predictable and is expressed in terms
of physical quantities. In the SI approximation, given by
(3) and (4), it is proportional to the instanton size, and

5 A similar behavior is expected for the quark correlator in
the physical vacuum[36].
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gains small negative corrections due to the background;
see (62). As to the large scale it is out of the scope of our
model, and we can only physically relate it to the confine-
ment size or extract it from the long-distance asymptotics
of lattice calculations. The microscopic description of the
long-distance background field needs other considerations
not examined in the present work.

The calculations have been performed in a gauge-in-
variant manner by using the expressions for the instanton
field in the axial gauge. The behavior of the correlation
functions demonstrates that in the single constrained in-
stanton approximation the model of non-local condensates
can well reproduce the behavior of the functions at short
and intermediate distances, while the large-scale asymp-
totics is dominated by the background field. It would be
quite desirable to make a fit to the lattice data using as
an input the instanton-induced correlators. The impor-
tant question concerning the interacting ensemble of the
constrained instantons also has to be postponed for other
specific work.
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Appendix A

The question may arise why the short-range vacuum con-
tributions to the D1

(
x2
)

structure are negligible. As was
found in [15], in the SI case D1

(
x2
)

= 0 due to the self-
duality of the instanton solution. The CIs are not self-dual
and contribute to D1

(
x2
)
, but to what extent is the self-

duality violated? We are going to show that for the rea-
sonable set of parameters and ansätze assumed the CIs are
“almost” self-dual and this is the reason for the smallness
of D1

(
x2
)
. On the contrary, if lattice simulations detected

a very big contribution to D1
(
x2
)
, this would mean that

self-duality is lost and there is no chance to save instan-
tons as individual objects in the QCD vacuum. From the
point of view of our model, any essential contributions to
D1
(
x2
)

can arise only from the large-scale vacuum fluc-
tuations.

The dual field strength F̃CI,a
µν (x) = (1/2)εµνρσFCI,a

µν (x),
where FCI,a

µν (x) is defined in (33), can be expressed in the
form

F̃CI,a
µν (x) = 4

[
ηa

µν ω̃1 (x) +
(
xµηa

νρ − xνηa
µρ

)
xρω̃2 (x)

]
,

(A.1)

where

ω̃1 (x) = ϕg
(
x2)+ x2 ∂ϕg

(
x2
)

∂x2 ,

ω̃2 (x) = ω2 (x) = ϕ2
g
(
x2)+

∂ϕg
(
x2
)

∂x2 . (A.2)

Let us consider the difference of the field strengths given
in the regular gauge:

FCIa
µν (x) − F̃CIa

µν (x)

= 4

[
ηa

µν + 2

(
xµηa

νρ − xνηa
µρ

)
xρ

x2

]
ωreg

2 (x)x2. (A.3)

The self-duality condition FCIa
µν (x) − F̃CIa

µν (x) = 0 is sat-
isfied for the SI case, where x2ωreg,I

2 (x) = 0 (see (40)).
Comparing (33) and (A.1) with (A.3) we can consider the
condition∣∣∣ωreg,CI

2 (x)
∣∣∣x2 <<

∣∣∣ωreg,CI
1 (x)

∣∣∣ ∼ ∣∣∣ωreg,I
1 (x)

∣∣∣
as a criterion indicating that the field is “almost” self-dual.
It can be checked numerically that this is really the case
at a reasonable choice of the background field-strength
parameter αg < 1 and all forms of ansätze for CI. At the
same time at larger values of the parameter αg ' 4 ÷ 6
the inequality is not fulfilled. Thus we show that assuming
diluteness of the vacuum the CIs are “almost” self-dual
solutions and, as a consequence, contribute very little to
the D1

(
x2
)

structure of the vacuum gluon field-strength
correlators.

Appendix B

The function Φ(z2) for the different forms of the invariant
function B̃

(
x2
)
:

ΦG(z2) =
2

3y4

[
2
√

πy3erf (y) − 3y2 + 1

− (1 − 2y2) exp
(−y2)] , Gaussian, (B.1)

ΦM (z2) =
2

3y4

[
4y3 arctan (y) + y2

− (1 + 3y2) ln
(
1 + y2)] , monopole, (B.2)

and

ΦE(z2) =
4

3y4

[
2y3 − 3y2 + 6

−6 (1 + y) exp (−y)] , exponential, (B.3)

where y = z/R, R being the correlation length of the
large-scale vacuum field.

For completeness we present here the small interfer-
ence contribution to the invariant forms A(x2) and B(x2)

Ainterf(x2)
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= ND

〈
0
∣∣F 2

b

∣∣ 0〉 Nc

6 (N2
c − 1)

∫ ∞

0
drr2

×
∫ ∞

0
dtΦ(z+, z−)ϕg

(
z2
+
)
ϕg
(
z2
−
)

(B.4)

· (z+ · z−)
{
(z+ · z−)

(
3 − 4 sin2(αz)

)− xr sin(2αz)
}

,

Binterf(x2)

= ND

〈
0
∣∣F 2

b

∣∣ 0〉 Nc

6 (N2
c − 1)

×
∫ ∞

0
drr2

∫ ∞

0
dtΦ(z+, z−)ϕg

(
z2
+
)
ϕg
(
z2
−
)

·r2 {2 (z+ · z−)
(
2 − 3 sin2(αz)

)− xr sin(2αz)
}

,

where

Φ(z+, z−) = 4
∫ 1

0
dα

∫ 1

0
dβαβB̃

[
(αz+ − βz−)2

]
,

z± = (r, t ± (x/2)), z = (r, t) , and ϕg
(
z2
)

is defined
in (31). In deriving the above expressions we used the
Schwinger–Fock gauge for the background field, (16)–(19),
and neglected the derivative D̃′

1(x
2) in comparison with

the invariant function B̃(x2) itself. In fact, this is consis-
tent with D̃1

(
x2
)

= 0 which follows from the lattice data
[7] and instanton calculations [15]. We find that the inter-
ference contributions to the correlators are very small in
absolute value, have a shorter correlation length compared
with the CI contributions (54) and (55), and do not lead
to an obvious appearance of the D1

(
x2
)

structure.
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